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bstract

Mathematical models that predict performance can aid in the understanding and development of solid oxide fuel cells (SOFCs). Of course, various
odeling approaches exist involving different length scales. In particular, very significant advances are now taking place using microscopic models

o understand the complex composite structures of electrodes and three-phase boundaries. Ultimately these advances should lead to predictions of
ell behavior, which at present are measured empirically and inserted into macroscopic cell models.

In order to achieve this ambitious goal, simulation tools based on these macroscopic models must be redesigned by matching them to the complex
icroscopic phenomena, which take place at the pore scale level. As a matter of fact, the macroscopic continuum approach essentially consists

f applying some type of homogenization technique, which properly averages the underlying microscopic phenomena for producing measurable
uantities. Unfortunately, these quantities in the porous electrodes of fuel cells are sometimes measurable only in principle. For this reason, this
ype of approach introduces additional uncertainties into the macroscopic models, which can significantly affect the numerical results, particularly
heir generality.

This paper is part of an ongoing effort to address the problem by following an alternative approach. The key idea is to numerically simulate the
nderlying microscopic phenomena in an effort to bring the mathematical description nearer to actual reality. In particular, some recently developed
esoscopic tools appear to be very promising since the microscopic approach is, in this particular case, partially included in the numerical method

tself. In particular, the models based on the lattice Boltzmann method (LBM) treat the problem by reproducing the collisions among particles of
he same type, among particles belonging to different species, and finally among the species and the solid obstructions.

Recently, a model developed by the authors was proposed which, based on LBM, models the fluid flow of reactive mixtures in randomly generated
orous media by simulating the actual coupling interaction among the species. A parallel three-dimensional numerical code was developed in order
o implement this model and to simulate the actual microscopic structures of SOFC porous electrodes.

In this paper, a thin anode (50 �m) of Ni-metal/YSZ-electrolyte cermet for a high-temperature electrolyte supported SOFC was considered in

he numerical simulations. The three-dimensional anode structure was derived by a regression analysis based on the granulometry law applied to
ome microscopic pictures obtained with an electron microscope. The numerical simulations show the spatial distribution of the mass fluxes for
he reactants and the products of the electrochemical reactions. The described technique will allow one to design new improved materials and
tructures in order to statistically optimize these fluid paths.
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. Introduction
Solid oxide fuel cells (SOFCs) are receiving considerable
nterest since they are suited for both stationary and vehicle
pplications [1–3]. The reduction of activation polarization, the
limination of expensive catalysts, potential integration with
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Nomenclature

A geometric area
c lattice speed
D mutual diffusivity
e specific internal energy
f continuous single particle distribution function
F Faraday’s constant
g acceleration due to an external field
J electric current density
k kinetic forcing term
L length
m single particle mass
M molecular mass
Q collisional operator
R universal gas constant
t time
T temperature
u macroscopic velocity
v microscopic velocity

Greek letters
δ discrete step
ε porosity
λ relaxation frequency
ν kinetic viscosity
ρ density
τ collision time

Subscripts and superscripts
A generic species
B generic species
e equilibrium
m mixture
0 value at I/O bottom value
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σ generic species

ogeneration systems, and the possibility of being able to con-
ider different composition of syngas as the fuel are interesting
echnical challenges. The Department of Energy (DOE) of the
nited States a few years ago initiated a set of research projects

SECA—Solid State Energy Conversion Alliance) with the
urpose of increasing the power density, reducing the manu-
acturing costs, and encouraging commercially cost-effective
rototypes. The European Union, through the European Hydro-
en and Fuel Cell Technology Platform: Strategic Research
genda (January 2005), has indicated that the SOFC is a priority

hoice for stationary applications.
The typical solid oxide structure involves a thick electrolyte

f yttria stabilized zirconia (ZrO2 + 8% Y2O3) for the electrolyte
upported (ES) cells. The function of the YSZ ceramic sup-

ort is to maintain the stability of the electronically conductive
ickel–metal particles and to provide an anode thermal expan-
ion coefficient acceptably close to those of the electrolyte. The
SZ part of the cermet structure also partially serves as the

t

m
e
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onic conductor. Very thin layers (50–100 �m are typical val-
es) are coated on both sides in order to form the cathode and
he anode elements and must sustain actual operating conditions
f 900–1000 ◦C.

A new trend during recent years is to employ thick porous
lectrodes, which are made of cermet [4–6]. This practice allows
ne to lower the operating temperature to a moderate range
700–850 ◦C) and consequently to reduce the material cost and
he requirements for auxiliaries. With regards to the cathode
lectrode, a material addressing the technical requirements of
his component is lanthanum manganite suitably doped with
lkaline (calcium) and rare earth (strontium) elements in order
o improve its electronic conductivity (La0.7Sr0.3MnO3). This

aterial allows one to reduce the cathode layer thickness to
mm in cathode supported (CS) cells and 0.1 mm in anode sup-
orted (AS) ones. With regards to the anode electrode, its basis
aterial is a skeleton of yttria stabilized zirconia (YSZ) around
i particles. The anode layer thickness is on the order of 0.1 mm

CS) and 1.5 mm (AS).
In many international research centers, most of investigations

re focused on the experimental analysis of single cells SOFC
nder typical operating conditions or of small stacks fed from
arious fuels such as methane or hydrogen [7]. The objective of
hese experiments is to understand the phenomena that are at the
ase of the operation and the stability of the cells [8], character-
zing the electrochemical behavior of a single cell’s components
nd identifying the optimal conditions for its operation [9,10].
ell or stack performance is recorded with respect to parame-

ers such as fuel composition, the pressure of the reactants, the
perating temperature of the cell, eventual phenomena of macro-
copic degradation (e.g., de-lamination or carbon deposition
8]), cell polarization losses related to processes of microscopic
egradation (e.g., evolution of the microstructure of the anode
11–15], cathode [16,17], and electrolyte [18–20]). Sometimes
hese phenomena are investigated by resorting to morphological
nalyses of the materials before and after the phases of opera-
ion through the use of sophisticated techniques such as scanning
lectron microscopy (SEM).

Some of the microscopic phenomena investigated in the lit-
rature include those for the cathode electrode, which can be
ffected by kinetic de-mixing. This effect does not seem related
o the cell operating temperature but instead to the fact that the

aterial is affected by the electric field present. This condition
f kinetic de-mixing can lead to pore formation in the material
hich is primarily situated at the cathode/electrolyte interface,

eading in turn to losses in electrochemical performance. The
pplied current of the electric field creates an oxygen potential
radient, and it is this difference which may be the driving force
or pore formation [16]. As to the anode electrode, it can be
ffected by nickel agglomeration, which can be explained as a
egradation of the electrochemical three phase boundary (TPB)
ue to the sintering of metal particles and a decrease in contact
rea at the electrolyte/anode interface as well as a decrease in

he specific surface area of Ni particles [15].

The mass transport phenomena throughout the electrode
aterials are key to cell performance. The thickness of the

lectrodes, their porosity (in volume fraction), the pore dimen-
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ions, the tortuosity factor, and the pore connections are the
ain parameters affecting the mass transport of chemical species

hrough the electrode/electrolyte interface [21]. The mass trans-
ort of chemical species greatly influences the concentration
verpotentials on the anode and cathode sides (in particular,
he cell voltage is primarily affected by cathode layer thick-
ess [22,23]) and modifies the fuel reforming rate on the anode
lectrode surface, causing temperature non-uniformities and
echanical failure due to thermally induced stresses [24].
Because of the difficulties in realizing prototypes, an exten-

ive simulation activity can be found in the open literature
25–27]. Many models are based on the assumption that the
tructure of the porous medium is isotropic so that the cermet can
e described by three structural parameters (the ratio of poros-
ty to tortuosity, the mean value and the standard deviation of
he pore radii). They are used to compute the phenomenological
oefficients which are involved in the constitutive correlations
or the diffusion and the permeation (MTPM—mean transport
ore model) [28]. In particular, the diffusion and the permeation
henomena depend on conventional molecular effects and on
inetic effects, since some of the pore radii are comparable to
he mean free path of flowing fluids. In particular, for an anode-
upported SOFC where high fuel utilization is required, a small
rror in the concentration overpotential calculation, which is
ainly affect by mass transport inside the porous anode, may

ause a dramatic change in its design performance [29]. Some
xperiments have been performed in order to determine the
tructural parameters for cermet materials [30]. These experi-
ents and additional theoretical reasons induce one to conclude

hat among the structural parameters, it is the ratio of porosity to
ortuosity and the mean value of pore radii that primarily affect
he reaction rate [30]. However, at the moment, the suitability
f structural parameters and of the constitutive correlations to
escribe macroscopic flow rates has not been completely verified
or the cermet involved in SOFCs. This is due to reasons:

Many different microscopic topologies are possible which
share the same values for structural parameters such as the
macroscopic averaged properties of porosity and tortuosity.
There are a myriad of working conditions for porous elec-
trodes and for this reason it is very difficult to experimentally
verify the constitutive correlations which describe the diffu-
sion and the permeation in all practical ranges.

Despite the success of macroscopic modeling in understand-
ng the complex phenomena occurring during fuel cell operation
nd in contributing to improved fuel cell designs, the actual
icrostructure of the porous layers that constitute a fuel cell

s usually not modeled. Its effects on cell operation and per-
ormance are taken into account by considering homogeneous
ayers characterized by the macroscopic averaged parameters of
orosity and tortuosity. While this eases the modeling efforts,
t carries two disadvantages. Firstly, if an in situ measurement

f such macroscopic quantities is performed, the related uncer-
ainties are bound to affect the model results, whereas if porosity
nd tortuosity are treated as fitting parameters, there is no guar-
ntee that the true values are used since such parameters can be

•
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sed to compensate for the inaccurate modeling of other phe-
omena. Secondly, it has been shown [31] that different porous
ayer microstructures, characterized by the same porosity, show
ifferent hydraulic characteristics. In other words, no macro-
copic parameter can exhaustively describe what happens at
icroscopic levels.
In order to overcome these limitations, a novel approach to

as flow modeling in porous media, based on the lattice Boltz-
ann methods (LBMs), has been utilized. LBMs are efficient

umerical tools for investigating flow in highly complex geome-
ries, such as porous media [32–34]. Even though traditional
avier–Stokes solvers could be used to describe porous media
ow, LBMs do not require pressure–velocity decoupling or the
esolution of a large system of algebraic equations [35,36]. They
olve a simplified Boltzmann equation for an ensemble-averaged
istribution of moving, interacting particles on a discrete lat-
ice. The macroscopic quantities that describe the fluid flow
an be calculated as moments of this distribution. Since the
otion of particles is limited to fixed paths connecting lattice

odes, the resolution process needs only information about the
earest neighbor nodes. This feature, along with the explicit
ature of the numerical scheme, makes LBMs very suitable for
arallelization.

Lattice Boltzmann models seem to be very promising for
he analysis of reactive mixtures in porous layers [37,38]. For
his reason, a lot of work has been performed in recent years in
rder to produce reliable lattice Boltzmann models for multi-
omponent fluids and, in particular, for mixtures composed of
iscible species [39–43]. The problem is to find a proper way,
ithin the framework of a simplified kinetic model, of describing

he interactions among different particles. Once this milestone is
chieved, the extension of the model to reactive flows is straight-
orward [44,45] and essentially involves additional source terms
n the species equations which result from the reaction rate.
nfortunately, most existing lattice Boltzmann models for mix-

ures are based on heuristic assumptions or prescribe too many
onstraints for setting the microscopic parameters, the end result
f which is an idealized macroscopic description.

The ultimate goal of the present work is that of obtaining a
omplete mesoscopic model of fluid flow and reaction in three-
imensional fuel cell porous media. The advantage of this would
e that only the medium microstructure would need to be mea-
ured (for example by means of microscopic images and/or
omography scans) and then cell performance could be pre-
icted. In the present paper, the following concrete steps towards
he achievement of this goal are discussed:

Firstly, the reliability of the numerical simulations strongly
depends on the reliability of the considered microscopic
topology used in the simulations, i.e. if the microscopic topol-
ogy actually reproduces the physical distribution of the solid
phases. In this paper a three-dimensional microscopic topol-
ogy was reconstructed from microscopic images using the

granulometry law. The intrinsic limits of this technique are
outlined.
Secondly, the reactive mixture model [46] previously con-
sidered [47] was substituted with an updated model recently
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ble values of the gray scale) to the final digital map, which
allows one to recognize the nature of the materials involved,
is effected by errors dealing with how to estimate the proper
thresholds for each material. This is one of the main sources
62 P. Asinari et al. / Journal of P

proposed [48,49] which is based on the Gross and Krook
model, in order to deal with reactive gas mixtures character-
ized by large mass ratios and a non-fixed Schmidt number
like those involved in fuel cell modeling.
Thirdly, a new semi-implicit algorithm, called SILBE scheme
[49], was implemented in the three-dimensional code for
reducing the computational time, thus, enabling larger com-
putational domains. In particular, some numerical results are
reported for the 2563 case (16.8 million cells).

In the next sections, the reconstruction of microscopic topolo-
ies by means of the granulometry law, the essential features of
he mathematical model and finally the numerical results will be
iscussed.

. Reconstruction of microscopic topologies

First of all, the microscopic topology of the material for
he numerical simulation must be obtained. For a wide range
f materials, this can be achieved by computer tomography
sing X-ray absorption contrast (XCT). Unfortunately, mate-
ials with fine structures do not yield the necessary image
uality when using XCT. In particular, non-destructive X-
ay computed micro-tomography directly produces 3D pore
pace at resolutions of around a micron. For SOFC applica-
ion, this resolution is not sufficient and reconstructions from
eliable 2D techniques such as standard and back scanning elec-
ron microscopy (SEM/BSEM), is the only viable alternative.
ew three-dimensional imaging techniques like phase contrast

omography [50] relying on the use of synchrotron radiation
vercome this problem. However, conventional microscopic
mages of cross-sections are still cheaper, faster, and require
ess effort to obtain [51].

With these images, proper digital image processing is needed
n order to recognize the different solid phases and to distinguish
hem from the void fraction [51]. To do this, a number of proper
hreshold values are assumed in order to distinguish among the
onstituent materials of the porous medium so as to produce a
ruly digitalized image, i.e. an image where each point belongs
o a single specified region (ion conducting, electron conducing,
r pore).

After 2D component identification, a proper reconstruction
trategy (or a proper stereological theory, using the nomenclature
f Ref. [51]) must be assumed in order to transform the 2D
icrograph into a 3D structure, preserving the main features

utlined by the experimental investigation. These main features
an be computed by means of statistics of increasing complexity,
imited only by the computational power available.

A model of stochastic geometry is adapted to the microstruc-
ure by fitting the model parameters. To this end, geometric
haracteristics of the microstructure are determined and the

arameters of the model are chosen such that characteristic prop-
rties of the material (e.g., porosity or fiber radius distribution)
re represented correctly.

There are two main techniques for dealing with this statistical
egression:

F
p
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The granulometry law, which is based on the simplifying
assumption that the porous medium is made of regular grain
with a fixed, known shape [52].
Multiple-point statistics, which takes into account the
neighboring information for producing a more reliable recon-
struction [53].

Multiple-point statistics is used, based on two-dimensional
2D) thin sections as training images to generate 3D pore space
epresentations. Assuming that the medium is isotropic, a 3D
mage can be generated that preserves typical patterns of the
oid space seen in the thin sections. The use of multiple-point
tatistics predicts the long-range connectivity of the structures
etter than the granulometry law. The three principal steps in
his algorithm are as follows: borrowing multiple-point statis-
ics from 2D training images; pattern reproduction; and final
mage processing for improving the local quality and consis-
ency of the reconstruction. Since the implementation by the
uthors of multiple-point statistics is currently underway, the
impler granulometry law is used in this paper.

Let us now consider the anode-side of a conventional
lectrolyte-supported planar SOFC. The experimental data and
he microscopic pictures obtained by means of back scanning
lectron microscopy are taken from [54]. Information regarding
he three-dimensional porous structure of the Ni-metal/YSZ-
lectrolyte cermet is obtained using the microscopic image of
he porous anode obtained by a back scanning electronic micro-
cope. The reference microscopic image used for computing the
ranulometry laws for both Ni and YSZ is shown in Fig. 1.
irst of all, some threshold must be considered in order to
utomatically distinguish among the two solid phases and the
ree pores for the mixture fluid flow. This conversion from
he original analogical image (characterized by all the possi-
ig. 1. Micrograph of the porous anode (bright: Ni; grey: electrolyte; black:
ores) [54].
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ig. 2. Granulometry law for Ni: relative populations with regards to the char-
cteristic grain sizes for Ni.

f errors in producing reliable post-processing of microscopic
mages.

Once the digital map has been created, it is possible to apply
he granulometry law. Essentially, one must count how many
rains, characterized by a given shape (square) and a given size,
xist in the digital map. The procedure used to obtain the total
umber of grains of a particular grain size of a particular species
s as follows:

The whole computational domain is checked for the largest
grain size possible.
Wherever the grain size is obtained, the corresponding cells
are converted to neutral cells (i.e. are no longer considered in
the following computations).
The number of grains corresponding to that particular grain
size is counted.
This procedure is repeated until the total count for the least
grain size of that species is obtained in order to completely
fill the whole surface occupied by a given species.

The results of the previous procedure are reported in Fig. 2
or Ni and in Fig. 3 for YSZ. The granulometry laws for both
aterials are reasonably interpolated by exponential functions,
amely:

N

Nt

)
Ni

= 0.4187 exp

(
−0.6433

d

d0

)
(1)

ig. 3. Granulometry law for YSZ: relative populations with regards to the
haracteristic grain sizes for YSZ.
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N

Nt

)
YSZ

= 0.2762 exp

(
−0.6109

d

d0

)
(2)

here d0 = 0.404 �m and is the minimum grain size considered
y the statistical regression. Obviously the minimum grain size
s dictated by the resolution of the micrograph. In the present
ase, the whole anode thickness (80 �m) is described by means
f 198 pixels in the considered micrograph.

Once the granulometry law is applied for both the electron
onducting grain distribution and the ion conducting grain dis-
ribution, this information is used to generate the random porous
tructure of the portion of the anode layer where the three-phase
oundaries are located. A code was developed to create the
orous structure. The procedure used to generate the porous
tructure is as follows:

The computational domain is first filled with the largest pos-
sible electron conducting grains (number of grains calculated
from the granulometry law).
The next step is to randomly fill the remaining computational
domain with the next largest electron conducting grains.
This procedure is continued till the smallest electron conduct-
ing grains are filled up in the computational domain.
The above three steps are carried out for the ion conducting
grains to fill up the computational domain.

Some simple geometric relations must be applied in order to
nsure that the 3D reconstructed microscopic topology has the
orosity experimentally measured.

The size of the reconstructed domain can obviously be differ-
nt from that of the original training image used for calculating
he granulometry law. Usually the size of the reconstructed
omain depends on the available computational power. It is
orth remembering that, in order to ensure grid independent

esults, the computational mesh must be finer than the physical
rid used for describing the porous medium. In this paper, one
f the goals is to find the optimal ratio between the size of the
omputational (structured) mesh and the physical grid, conven-
ionally called refinement. For this reason, a small reconstructed
omain has been selected for considering very large computa-
ional refinements and, consequently, more accurate estimations
f the fluid flow. In particular a 13 �m cube was considered filled
y a 323 physical grid. The reconstructed cube sizes can be eval-
ated in Fig. 1 by comparing them with the full anode thickness.
he final result of the 3D reconstruction procedure is reported

n Fig. 4.
The next step is to locate the tree-phase boundaries (TPBs)

here the electrochemical reactions take place. For locating the
BPs, it is not enough to simply check where an electron con-
ucting cell (ECC), an ion conducting cell (ICC), and a fluid
ath cell (FPC) are in contact with each other. In fact, in order to
ealize an electrochemical reaction, the ECC must be in contact
ith the electron sink, i.e. the metal grid collecting the electrons

n the anode-side of the fuel cell. This means that at least one
onnection path must exist between the collecting grid and the
CC in question. In a similar way, one must ensure that the ICC

s physically connected with the electrolyte bulk and the FPC
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Fig. 4. Reconstructed 3D microscopic topology used in the numerical simula-
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ions. The distribution of the three phases is consistent with the granulometry
aws reported in Figs. 2 and 3 and is derived by the post-processing of the

icrograph reported in Fig. 1.

s connected with the gas supply/discharge network (otherwise
he reactants and the products of the electrochemical reaction
ould not be available). The location of the active TPBs, where

he electrochemical reactions take place (by means of modified
ocal concentrations of the species, as outlined in the section
ealing with the boundary conditions), is performed automat-
cally by the developed numerical code. This is done in two
teps:

First of all, the code searches for all the regions of the recon-
structed porous medium where an electron conducting cell
(ECC), an ion conducting cell (ICC), and a fluid path cell
(FPC) are in contact with each other by means of a non-null
surface. These regions are labeled as potential TPBs and their
geometric characteristics (essentially size and actual shape)
are stored for post-processing.
In the next step, the numerical code verifies if (at least)
three elementary paths exist which connect the potential TPB
with the electrical grid, electrolyte bulk, and the gas sup-
ply/discharge network, respectively. In this case (and only in
this case), the potential TPB is marked as an actual TPB and
the code takes into account the effects of the electrochemical
reactions at the gas site close to it.

In the next section, the details of the physical model used for
escribing the fluid flow of the reactive mixture are discussed.

. Mathematical model for reactive mixture flow in
orous media
.1. Continuous kinetic model

Following the derivation of the Boltzmann equation for a
imple system with a single species, the kinetic equations for a

l
l
n
f
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imple system comprised of a mixture can be derived in a similar
ay [5–57]. Let us consider a mixture composed of only two

ypes of particles labeled a and b. The two Boltzmann equations
or the binary system are

∂fA

∂t
+ v · ∇fA + gA · ∇vfA = QAA + QAB (3)

∂fB

∂t
+ v · ∇fB + gB · ∇vfB = QBA + QBB (4)

here fA(x, v, t) is the continuous single particle distribution
unction for the a species, v the microscopic velocity, gA the
cceleration due to an external field for the A species, and similar
efinitions hold for the B species. The quadratic expressions QAA
nd QBB are the collisional terms which describe the collisions
mong particles of the same type (self-collisions), while QAB
nd QBA are the collisional terms due to the interactions among
ifferent species (cross-collisions).

Each collision term has a well-known structure similar to
he collision operator involved in the Boltzmann equation for a
ingle species fluid [31]. The time evolution of the distribution
unction for each species is affected both by collisions with par-
icles of the same type and with particles of different type. These
wo phenomena are the kinetic driving forces of the equilibration
rocess for the whole mixture.

A simplified kinetic model which allows one to separately
escribe both the driving forces, as they appear in the origi-
al Boltzmann equations, would be desirable. Essentially, the
ey idea is to substitute the previous collisional terms with sim-
lified ones, which are selected with a BGK-like structure. In
articular, the BGK operator involves the difference between
he actual value of the distribution function and the equilibrium
ne. Unfortunately, there is considerably more latitude in the
hoice of a linearization procedure in the case of a mixture than
or a pure gas [57]. In the latter case, a local Maxwellian cen-
ered on the (uniquely defined) macroscopic velocity is usually
he candidate for the unperturbed component of the distribution
unction. In a mixture, however, it is possible to linearize about
local Maxwellian which contains the barycentric velocity or,

lternatively, one can introduce distinct species flow veloci-
ies and linearize about local Maxwellians which contain these
uantities.

Even though it could result in slightly more complicated mod-
ls, the choice of separate Maxwellians seems more general and
etter suitable for dealing with different regimes consistently.
he model obtained is due to Hamel [58–60]. A Lattice Boltz-
ann formulation of this model was recently proposed [46] and

sed for describing reactive mixtures [47].
Unfortunately, the Hamel model (and all those resulting from

proper linearization of it) are not completely self-consistent
48]. In fact, if one sums over the species equations, one does
ot exactly recover the momentum equations (as one should).
ince the errors are negligible for fluid flows characterized by
ow Reynolds numbers, this model was considered in our pre-
iminary simulations, because it allows one to tune the Schmidt
umber of the binary mixture (ratio between the molecular dif-
usivity and the mixture kinematic viscosity). Unfortunately, the
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the previous integrals (Eqs. (8) and (9)) reduce to weighted
summations of the considered discrete functions. The interpo-
lation test function should be as similar to the local Maxwellian
P. Asinari et al. / Journal of P

uning strategy, i.e. finding the proper combination of relaxation
arameters for achieving this goal, and the correction terms for
ompensating the discretization errors required some compli-
ated algebra, which (unacceptably) increases the computational
emand.

A new lattice Boltzmann model was, thus, developed [49] for
ecovering the transport coefficients of real mixtures in a simpler
ay. The continuous (pseudo-) kinetic model used as the theo-

etical starting point is the model due to Gross and Krook [61].
sing σ = A, B for indicating the generic species, the simplified
inetic equation has the general form:

∂fσ

∂t
+ v · ∇fσ + gσ · ∇vfσ = − 1

τm
[fσ − f e

σ(m)] (5)

here τm is the relaxation time constant for cross-collisions and
e
σ(m) is a local Maxwellian distribution function centered on a
haracteristic velocity for the mixture. The explicit expressions
f this local Maxwellian is

e
σ(m) = ρσ/mσ

(2πeσ)D/2 exp

[
−1

2

(v − u)2

eσ

]
(6)

here ρσ is the generic species density, mσ the particle mass,
the macroscopic barycentric velocity, eσ the internal energy,

nd D is the number of physical dimensions. The barycentric
elocity is defined as

=
∑
σ

xσuσ =
∑

σρσuσ∑
σρσ

(7)

here xσ is the mass concentration (mass fraction) for the
eneric species. Local momentum conservation implies that the
elaxation time constant τm for the cross-collisions must be the
ame for all species.

Macroscopic quantities, such as the density ρσ(x, t), the
acroscopic specific velocity uσ(x, t), and, consequently, the
acroscopic barycentric velocity u(x, t) can be calculated as the
oments of the density distribution function, i.e.

σ(x, t) =
∫ +∞

−∞
mσfσ dv (8)

σuσ(x, t) =
∫ +∞

−∞
mσvfσ dv (9)

This model is truly much simpler than the Hamel model;
ut it has only one tunable parameter, which is not enough for
ecovering both the desired molecular mixture diffusivity and
he mixture kinematic viscosity. However, this problem can be
xed once a proper discretization of the microscopic velocities
lattice) is considered.

.2. Lattice kinetic model
To solve the continuous kinetic equation (Eq. (5)), the dis-
rete ordinate method can be applied [61,62]. According to
his method, a set of discrete microscopic velocities vi must
e defined for which the distribution function is evaluated. The

t
t
m
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eneric function f i
σ(x, t) is the single particle distribution func-

ion evaluated for velocity vi at (x, t). In the present paper, a
hree-dimensional lattice called D3Q19, which makes use of 19
iscrete velocities (Q), is considered [63,64]. The specific lat-
ice used in the calculation is identified by the magnitude c (all
he lattices in the same set have the same proportions among
he elements, but they are all scaled to the physical microscopic
elocity c called the lattice speed).

This assumption simplifies the development of the numerical
ode; and it is essential for the physical model, because the
iscrete lattice is used for overcoming the intrinsic constraints
f the continuous Gross and Krook model.

Thus, the kinetic equation, which is an integro-differential
quation, reduces to a system of differential equations. The term
hat takes into account the effect of the external force field can
e neglected, because we are interested in concentration driven
ows (actually, a proper forcing term is considered in the numer-

cal implementation for improving the accuracy of the method).
ince the reference lattice has been defined, it is possible to write

he operative formula in vectorial form, namely:

∂fσ

∂t
+ V · ∇fσ = Am[fe

σ(m) − fσ] (10)

here V is the matrix collecting all the lattice components (V has
imensions Q × D, i.e. 19 × 3) and the scalar product between
atrices must be thought of as saturating the second index (in

act �fσ has dimensions 19 × 3 and consequently V·�fσ is a
olumn vector 19 × 1).

According to the Gross and Krook model on a lattice, the
ollisional matrix should be diagonal, namely Am = λmI, where
m = 1/τm. However, in order to increase the number of tunable
arameters, the collisional matrix is assumed to be

m = M−1
D DmMD (11)

here MD defines a proper orthonormal basis1 for the D3Q19
attice and Dm is the diagonal matrix, namely:

iag(Dm) = [0, λI
m, λI

m, λI
m, λII

m1, λ
II
m1, λ

II
m1, λ

II
m1, λ

II
m1, λ

II
m2,

λIII
m , λIII

m , λIII
m , λIII

m , λIII
m , λIII

m , λIV
m , λIV

m , λIV
m ] (12)

ollecting the generalized relaxation frequencies for self and
ross collisions. As will be clear later on (see the section concern-
ng the numerical implementation), λI

m controls the molecular
iffusivity, λII

m1 and λII
m2 control the mixture kinematic and bulk

iscosity respectively, while λIII
m and λIV

m are free parameters
ffecting the stability of the model (usually λIII

m = λIV
m = 1).

Since only the distribution functions for discrete microscopic
elocities are considered, an interpolation test function must be
dopted to calculate the macroscopic quantities. In this way,
1 Details on how to derive the orthonormal basis are reported in [49]. Even
hough this paper discusses the two-dimensional case (D2Q9 lattice), the deriva-
ion technique for the three-dimensional case is the same. The transformation

atrix is made of (simple) numerical constants.
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istribution function as possible in order to easily include the
quilibrium conditions. If we consider a low Reynolds num-
er flow (|uσ | = u � |v| = c), which essentially means u � c, the
quilibrium distribution function can be linearized around the
tate at rest [41]. This assumption allows one to compute the
attice weights for performing the calculation of the macro-
copic quantities. The final result is that all the macroscopic
both hydrodynamic and not-conserved) moments are proper
inear combinations of the discrete distribution functions; or,
quivalently, a linear mapping exists between the macroscopic
oments and the discrete distribution functions.
Once the hydrodynamic moments are computed, it is neces-

ary to verify that they satisfy the desired macroscopic transport
quations. For achieving this goal, diffusive scaling [65] can
e properly applied. There are three characteristic time scales
n this system: the time scale TC, which properly describes
he collision phenomenon, i.e. O(τm/TC) = 1; the time scale TF,
hich properly describes the particle dynamics on the lattice,

.e. O[(L/c)/TF] = 1 where L is the system size and, finally, the
ime scale TS, which properly describes the slow fluid dynamics,
.e. O[(L/u)/TS] = 1. The fast fluid dynamics (acoustic waves) is
eglected. Since a lot of collisions are needed in order to travel
cross the system, TC/TF = δ, where δ is a small number (expan-
ion parameter) is the porosity. Moreover, since u/c � 1, then
F/TS = δ and consequently TC/TS = δ2. Once the characteristic

ime scales are defined, the basic idea is to express the previ-
us equation in terms of some normalized quantities in order to
nalyze the slow fluid dynamics only.

Applying the diffusive scaling to Eq. (10) for a binary mixture
ields:

∂ρA

∂t
+ ∇ · (ρAuA) = 0 (13)

∂ρB

∂t
+ ∇ · (ρBuB) = 0 (14)

A(uA − u) = −DA∇ρA (15)

B(uB − u) = −DB∇ρB (16)

∂ρu
∂t

+ ∇ · (ρu ⊗ u) = ∇p + ν∇ · ρ(∇u + ∇uT) (17)

here DA = eA/λI
m, DB = eB/λI

m, ν = c2/(3λII
m1) and

= pA + pB, pA = eAρA, pB = eBρB (18)

he internal energies (since this is an isothermal model, the
oncept of internal energy is not rigorously defined) can
e expressed by means of the molecular weights, namely
A = RT/MA and eB = RT/MB where T is the temperature and
is the universal gas constant (8.31441 J mol−1 K−1). Conse-

uently, it is possible to define an equivalent molecular weight
or the mixture in such a way that p/ρ = RT/M, i.e.
= 1

xA/MA + xB/MB

(19)

his equivalent molecular weight for the mixture depends on the
ocal mass concentrations (xA = ρA/ρ and xB = ρB/ρ), because it

a

e
(
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s not an intrinsic property of the components. By selecting the
elaxation frequency such as

I
m = M2

MAMB

p

Dρ
(20)

here D is the mutual diffusivity of the mixture, which is a
olecular property due to the molecular interaction potentials,

he species velocity difference can be rewritten as

A − uB = − D

yAyB

[
∇yA + yAyB(MB − MA)

M
∇ ln

(
p

p0

)]
(21)

here yA = pA/p and yB = pB/p are the volume/molar concen-
rations. The previous expression is fully consistent with the

axwell–Stefan macroscopic model, which is actually quite
opular for modeling fluid flow in porous media involved in
uel cells. This is an important result because it proves that, in
he continuous limit (i.e. if a sufficiently large number of par-
icles is considered), the developed mesoscopic model recovers
he Maxwell–Stefan macroscopic model. This means that in each
sufficiently large) fluid pore, the mesoscopic model is consistent
ith the macroscopic approach and consequently the averaged
acroscopic results derived from the proposed model depend

nly on the topology of the porous medium, which is the goal
f our investigation. Before proceeding in this direction, it is
orth highlighting that the macroscopic equations which derive

rom the lattice kinetic model do not involve chemical reactions,
ecause there is no source term in the continuity equation. The
lectrochemical reactions realize a concentration driven flow by
odifying the species concentrations at the three-phase bound-

ries, while there are no chemical reactions in the bulk fluid.
or this reason, the electrochemical reactions were simply mod-
led by means of proper boundary conditions with regards to
he concentration for the fluid cells close to the three-phase
oundaries.

.3. Numerical algorithm

First of all, in order to develop the operative formulas for the
umerical implementation, the lattice equilibrium distribution
unctions can be explicitly expressed as

fe
σ(m)]i = ρσsiI

[
si0

siI
+ 3

c2 vi · u + 9

2c4 (vi · u)2 − 3

2c2 u2
]

(22)

here vi ∈ v is the ith lattice velocity, while the two sets of
onstants, namely:

0 = [1 − 2
3 sσ, 1

18 sσ, 1
18 sσ, 1

18 sσ, 1
18 sσ, 1

36 sσ, 1
36 sσ, 1

36 sσ,

1
36 sσ, 1

36 sσ, 1
36 sσ, 1

36 sσ, 1
36 sσ, 1

18 sσ, 1
36 sσ, 1

36 sσ, 1
36 sσ,

1
36 sσ, 1

18 sσ] (23)
nd sI = s0 (sσ = 1), are functions of the ratio sσ = 3eσ /c2.
It is clear from Eq. (21) that it is possible to distinguish in the

quilibrium distribution functions, terms which do not depend
fe0
σ(m)) or depend linearly (fe1

σ(m)) on the mixture velocity. Both
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f these terms can be expressed by means of a linear mapping of
he actual distribution functions (the equilibrium distributions
epend on the moments and the latter are linear combinations
f the actual distribution functions), namely:

e0
σ(m) = Me0fσ (24)

e1
σ(m) = xσMe1

∑
σ

fσ (25)

onsequently, the residual quadratic terms can be expressed as

e2
σ(m) = fe

σ(m) − fe0
σ(m) − fe1

σ(m) (26)

Secondly, some dimensionless coordinates can be considered
the so-called “lattice units”). Let us introduce a dimensionless
pace x̂ = x/L, time t̂ = t/TS, and collisional operator Âm =
CAm. In this dimensionless system, the continuous formula
iven by Eq. (10) can be approximated by the following discrete
ormula on a regular spatial mesh, namely:

σ(t̂, X̂) − fσ(t̂ − 1, X̂ − V̂)

= Âm[fe
σ(m)(t̂, X̂) − fσ(t̂, X̂) + kb(t̂, X̂)] (27)

here kb(t̂, X̂) is a proper forcing term, which must be intro-
uced in order to satisfy the continuity equations with the
iscrete formula up to the second order in space and the first
rder in time (see [49] for details). The previous integration rule
erives directly from the implicit backward Euler formula. The
mplicit formulation allows one to improve the stability of the
cheme, i.e. for any values of the relaxation frequencies, the
acroscopic transport coefficients cannot assume unphysical

negative) values.
Unfortunately, the implicit formulation is computationally

ore demanding and, for this reason, the improved stabil-
ty is paid by longer simulations. However, in this case, it is
ossible to develop a semi-implicit formulation, i.e. it is pos-
ible to compute implicitly all the terms which can be solved
nce and for all at the beginning of the computations (pre-
rocessing) and explicitly only the quadratic terms. The reason
s that the quadratic terms do not affect the stability performance

uch.
The first step is to derive an operative formula for the barycen-

ric distribution function, which is computed by the sum of the
pecies distribution functions. Substituting Eqs. (24)–(26) into
q. (27) and summing over all the species yields:

σ

fσ(t̂, X̂) = BS

∑
σ

fσ(t̂ − 1, X̂ − V̂) + BQ

∑
σ

fe2
σ(m)(t̂ − 1, X̂)

(28)

here

S = [I − Âm(Me0 − I) − ÂmMe1]
−1

(29)

nd BQ = BSÂm.

Once that the barycentric distribution function is known, i.e.

σfσ(t̂, X̂), then it is possible to solve the equation for each
pecies distribution function (actually it is enough to solve N − 1
quations if N is the number of species because the residual can

l
p
m
t
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e deduced by the barycentric conditions), i.e.

σ(t̂, X̂) = SSfσ(t̂ − 1, X̂ − V̂) + SQfe2
σ(m)(t̂ − 1, X̂)

+ xσ(t̂, X̂)SC

∑
σ

fσ(t̂, X̂) (30)

here

S =
[

I − Âm(Me0 − I) + λI
m

2 − λI
m

ÂmMe1

]−1

(31)

Q = SSÂm and SC = 2/(2 − λI
m)SSÂmMe1. This equation is

ery similar to Eq. (27), with the exception of an additional
oupling term for taking into account the effects due to the trans-
ort of mixture barycentric properties (computed in the previous
tep). The last term in the matrix given by Eq. (31) must com-
ensate the additional forcing term kb(t̂, X̂) introduced in the
perative formula for satisfying the continuity equation with
reater accuracy.

The quadratic terms are the only ones explicitly computed.
he generic concentration xσ(t̂, X̂) can be immediately com-
uted at the new time step by means of fσ(t̂ − 1, X̂ − V̂) since
he collisional operator conserves the density (the density is the
nly conserved moment in this case because of the diffusion
henomenon).

The outlined numerical algorithm reproduces the actual
ynamics of mass transport phenomena: the barycentric veloc-
ty field is solved first because it is the leading term and then
he diffusion velocities for each species follow. All the previous

atrices BS, BQ, SS, SQ and SC depend only on the dimension-
ess relaxation frequencies: hence they can be computed once
nd for all at the beginning of the calculation, being the same
or all the computational cells.

.3.1. Practical issues of implementation
First of all, some coding tricks must be considered in order

o increase the performance of the code executed on a sin-
le machine. The matrix notation is useful for explaining the
ssential features of the method and to analytically deduce the
umerical accuracy of the scheme. However, the direct imple-
entation of the matrix formulation in the numerical code is

ighly inefficient. For this reason, all the previously outlined
perations are directly implemented in order to outline the
ommon terms. In particular, the common sub-expression elim-
nation (CSE) was used in the design of the numerical code.
ven though modern compilers automatically include this fea-

ure, an accurate design of the code allows one to take specific
dvantage from the lattice Boltzmann formulation. For exam-
le, performing the collision step in moment space (defined by
proper linear mapping applied to conventional space) reduces

he number of required operations. Moreover, eliminating the
oment calculation as a separate step allows one to reduce the
emory access time.
Dealing with large computational domains (2563 = 16.8 mil-
ion cells or more), code parallelization is mandatory. In
articular, the code has been developed in C++ and a free com-
unication library has been adopted (MPICH 1.3) based on MPI

echnology [66]. The reported numerical results were obtained
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n two cluster facilities. The first one is System X at Virginia
ech (VT). It is essentially a computational platform made of
100 dual-processor Apple XServe G5 (2200 total CPUs, each
haracterized by 2.3 GHz, 4 GB RAM and 80 GB HD), con-
ected by Cisco Gigabit Ethernet and Mellanox switches. The
econd facility has been recently developed at “Politecnico di
orino” and it is made of 64 Pentium 4 nodes (each character-

zed by 2.8 GHz, 512 MB RAM and 40 GB HD). In both cases,
he typical number of CPUs used in the simulations was 64.
ince an elementary decomposition was used, more computa-

ional nodes would produce a reduction in the parallelization
fficiency (see [47]), because the decomposed computational
omain may have a local porosity which differs from the global
ne and this results in a load unbalance. The performance speed
f the code was measured during the present tests by the actual
LUPS (millions of lattice updates per second). Introducing

˙ UP (measured in MLUPS) as a useful parameter for estimat-
ng code performance independently from the number of used
odes, namely:

˙ UP = εD3NFNC

NCPUTime
(32)

here ε is the porosity, D the edge dimension of the cubic com-
utational domain, NF the number of fluids, NC the number of
ollisions, and NCPU is the number of CPUs. Typical values for
his parameter found here are close to 0.28 MLUPS for System X
nd 0.14 MLUPS for the cluster facility at “Politecnico”. These
alues are slightly slower than other numerical codes developed
or solving reactive mixtures in porous media. The reason is due
o the fact that the semi-implicit formulation is 25% slower than
he conventional explicit formulation. However, the stability is
reater and, thus, for the present application, the stability of the
ethod was privileged.
Finally, the computational domain given in Fig. 4 is refined,

hich means that the computational mesh is denser than the
hysical grid used for defining the porous medium in order to
nsure that the numerical results are mesh independent. Usu-
lly the fluid flow in each physical cell used to describe the
orous medium is solved by means of 23 = 8 computational
ells for the coarser meshes up to 83 = 512 cells for the finer
eshes. The typical domain decomposition for 64 CPUs is reg-

lar (i.e. same subdivisions along the main axis) as reported in
ig. 5.

. Numerical results

.1. Preliminary considerations

In the usual macroscopic modeling, some mass transport
odels inside the porous SOFC anode must be applied to

stimate gas concentrations at the anode–electrolyte interface.
owever, such a mass transport model needs to be sophisti-
ated enough so that it can take into account parameters such as
omplex functions of temperature, pressure, gas concentrations,
nd the physical properties of SOFC materials like porosity, tor-
uosity, and the pore size of the electrode materials [67]. The

s
a
(
r

ig. 5. Brief schematic of the considered application decomposed on 64 com-
utational processes. The species flow directions and the main I/O bottom plane
re outlined.

ssential problem is that all these models somehow depend on
tting parameters.

In general, mass transport of components inside porous media
an be described using either the extended Fick model (EFM)
r the dusty gas model (DGM). Both FM and the DGM are
ass transport equations taking into account Knudsen diffusion,
olecular diffusion, and the effect of a finite pressure gradi-

nt. Some other authors have eliminated the effect of Knudsen
iffusion, using only the Stefan–Maxwell model in their mass
ransport equations (SMM).

There are some evident degrees of freedom in selecting the
tting parameters concerning the porous medium microstruc-

ure in order to recover the experimental data. Moreover, the
pplication of the previous model requires some additional sim-
lifications. For example, it is quite popular to neglect the effects
ue to the finite pressure gradient. This hypothesis seems rea-
onable since there is no net change in the number of moles
n the gas phase due to the electrochemical reactions. From the
ractical point of view, this means neglecting the second terms
n the right-hand sides of Eq. (21). Unfortunately, this assump-
ion is not acceptable. The fact that the total number of moles
n the gas phase does not change does not necessarily imply
hat the pressure is constant. In fact, the total mixture mass
ncreases due to the electrochemical reactions (lighter hydro-
en particles are being substituted with heavier water particles)
nd, for this reason, a net out-coming mass flux must exist under

teady state conditions. This is understandable if one takes into
ccount that a relevant mass flux is entering by means of the
heavy) ions moving in the electrolyte. In other words, there is a
elevant out-coming mixture flux and consequently a proper total



ower

p
fl

t
a
m
d
a

(
p

e

e

i
a
(

s

b
s
b

d

D

w

ν

C
c
(
1
t
p
c

a

T
M

T

1
1

l
f

D

o

λ

F
c
a
f

ν

o

λ

e
t
r
t
o

i
(
i

H

n
(
t
t
r
n
e
c

P. Asinari et al. / Journal of P

ressure gradient must exist to ensure the driving force of this
ow.

The goal of the calculations reported here is to directly solve
he fluid flow of reactive mixtures in porous anodes. First of
ll, the transport coefficients must be tuned based on the (pure)
olecular values, which come form kinetic theory. These input

ata must be the same as those considered by the macroscopic
pproaches in order to make the comparison more reliable.

To do this, one must deal with a very large mass particle ratio
MH2O/MH2 = 9) by essentially tuning the fraction of moving
articles with regards to those at rest. Recalling that

A = RT

MA

= sA
c2

3
(33)

B = RT

MB

= sB
c2

3
(34)

t is possible to tune sA = 1.00, and consequently c = 3685.8 m/s
nd sB = 0.11. The corrective factor for the mixture equations
barycentric flux) is slightly more complicated, namely:

= sA

(
xA + MA

MB

xB

)
(35)

ecause it depends on the local concentrations (in this case,
0 = 0.20 only at the beginning of the calculations and at the I/O
ottom plane).

Concerning the transport coefficients, the mutual ordinary
iffusivity can be expressed by [68]:

= C

pσ2
ABΩD

√
T 3 MA + MB

MAMB

(36)

hile the mixture kinematic viscosity can be expressed by

= xAνA

1 + FAB(MA/MB)(xB/xA)
+ xBνB

1 + FBA(MA/MB)(xA/xB)
(37)

onsequently the Schmidt number, defined as Sc = ν/D, can be
omputed. The transport properties computed by means of Eqs.
32) and (33) are reported for in Table 1 for a mixture with
0% by mass of hydrogen. This concentration is assumed as
he initial condition for the numerical simulations and the trans-

ort coefficients are kept fixed during the simulations (the actual
oncentrations are very close to this condition).

Taking into account the expressions derived by means of the
symptotic analysis, it is possible to correlate the dimension-

able 1
olecular properties for binary mixtures of H2/H2O

(◦C) ν (m2 s−1) D (m2 s−1) Schmidt

500 0.000118 0.000201 0.589
600 0.000164 0.000279 0.589
700 0.000216 0.000367 0.589
800 0.000273 0.000463 0.588
900 0.000334 0.000568 0.588
000 0.000400 0.000681 0.588
100 0.000471 0.000802 0.587

a
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ess mutual diffusivity with the first dimensionless relaxation
requency, i.e.

ˆ = D

c2TC
= 1

3λ̂I
m

(xAMA + xBMB)

MB

(38)

r equivalently

ˆ I
m = xAMA + xBMB

3MBD̂
(39)

or the mixture kinematic viscosity, a similar procedure can be
onsidered with the difference that an additional term due to the
rtificial numerical viscosity must be included (preserving the
act that this coefficient must always be positive). Thus:

ˆ = ν

c2TC
= 1

3λ̂II
m1

(
1 + λ̂II

m1

2

)
(40)

r equivalently

ˆ II
m1 = 1

3ν̂ − 1/2
(41)

Finally, a proper set of boundary conditions must be consid-
red. Since the computational domain is chosen to be smaller
han the physical thickness of the anode layer, periodic geomet-
ic conditions are considered. This means that one must imagine
hat the computational domain is repeated in all directions in
rder to create the actual physical topology.

As to the electrochemical reactions, they do not take place
n the bulk fluid but are instead believed to take place near the
active) three-phase boundary of Ni, YSZ and the gas phase. It
s formulated globally as

2 (gas) + O2− (YSZ) → H2O (gas) + 2e− (Ni)

There is quite some controversy as to the actual pathway and
ature of the elementary steps of the previous global reaction
see [69–72] for a general discussion of this topic). From the
heoretical point of view, it is possible to consider various reac-
ion pathways, focusing on the elementary-step charge-transfer
eactions that are involved. Recently a tentative thermody-
amic model of the H2/H2O/Ni/YSZ three-phase boundary was
stablished in order to investigate the influence of operating
onditions (in terms the gas concentrations of both reactants
nd products) on the Ni/YSZ anode kinetics [69]. Three dif-
erent reaction pathways (oxygen spillover, hydrogen spillover,
nterstitial hydrogen transfer), based on five different elemen-
ary charge-transfer reactions, are the basis of this model. All
harge-transfer reactions show a strong and highly nonlinear
ependence of their kinetics on gas-phase hydrogen and water
oncentration. However, the behavior is distinctly different for
he various mechanisms. According to this model [69], the full
et of intermediate electrochemical charge-transfer reactions,
hich are discussed in the following, are grouped into three
ifferent sets (oxygen spillover, hydrogen spillover, interstitial

ydrogen transfer):

a) At the three-phase boundary line, oxygen ions (formally
O2−) may hop from the YSZ surface to the Ni surface in an
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elementary charge-transfer reaction (oxygen spillover) such
as

OYSZ
2− + [ ]Ni → ONi + [ ]YSZ + 2e−

where the subscripts denote the surface to which the species
is attached and [ ] indicates a free surface site. Subsequent
chemical reactions of hydrogen and oxygen species, includ-
ing adsorption of molecular hydrogen and desorption of
water, take place on the Ni surface. Alternatively, spillover
of hydroxyl ions (formally OH−) from the YSZ to the Ni
surface is possible, namely:

OHYSZ
− + [ ]Ni → OHNi + [ ]YSZ + e−

b) A different possible pathway for the global reaction is the
spillover of hydrogen from the Ni to the YSZ surface. The
hydrogen atoms may hop to either an oxygen ion site in an
elementary charge-transfer reaction such as

HNi + OYSZ
2− → OHYSZ

− + [ ]Ni + e−

or to a hydroxyl site (both reactions may be active in parallel
or consecutively):

HNi + OHYSZ
− → H2OYSZ + [ ]Ni + e−

c) Finally, at the typically high SOFC operating temperatures,
both interstitial hydrogen atoms in the bulk Ni and interstitial
protons in the bulk YSZ are known to be present in relatively
high concentrations with high enough diffusivities to sup-
port the global reaction. Charge transfer may, therefore, take
place at the two-phase boundary of Ni and YSZ. Interstitial
hydrogen and protons are formed via surface adsorption and
surface/bulk exchange from hydrogen on Ni and water on
YSZ, respectively.

For each single step elementary reaction, the forward and
ackward reaction rate constants may be theoretically defined.
y substituting the potential difference �ϕ by the activation
verpotential η, i.e. ηact = �ϕ − �ϕeq, in the equations ruling
he kinetics of the intermediate electrochemical charge-transfer
eactions and expressing �ϕeq via the Nernst relation, after some
lgebraic manipulation, the familiar Butler–Volmer relation [73]
s recovered, namely:

= J0

{
exp

[
αzF

RT
ηact

]
− exp

[
− (1 − α)zF

RT
ηact

]}

here J is the current density, J0 the exchange current density,
the number of electrons, α the symmetry factor and F is the
araday’s constant (F = 96,500 C mol−1).

As clearly outlined in the previous section, the actual micro-

copic dynamics of the electrochemical reactions is quite a
omplicated phenomenon, which from the theoretical point of
iew is not entirely clear in all of its details. On the other hand,
here is a large consensus in most of the applications concerning

t
t

〈
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he heuristic Butler–Volmer relation. As of yet, the ion and elec-
ron dynamics is not directly solved in the present model (the
ocus of our development has been elsewhere), even though it is
ot difficult to imagine some possible extensions of the model in
his direction, since the required additional equations are essen-
ially those of potential flow. Hence, it is not possible in our

odel to calculate at the moment the activation overpotential
act for use in the Butler–Volmer relation. However, in princi-
le, this is not a problem for the mass transfer model discussed
n this paper, because from the point of view of the mass transfer,
he electrochemical reactions are modeled by proper boundary
onditions. An eventual problem with this approach could be
hat due to the omitted back-coupling of the mass transfer on the
eaction dynamics.

Nonetheless, this last, more simplified approach of proper
oundary conditions is adopted in the following. The practical
ffects on the electrochemical reactions is to locally modify the
pecies concentration and hence to produce concentration driven
ow. It is easy to correlate the total inlet/outlet fluxes (at the
ottom I/O plane) with the averaged operating conditions of the
uel cell by means of the current density J so that

ρAuA〉 = +MA

J

2F
(42)

ρBuB〉 = −MB

J

2F
(43)

ρu〉 = (MA − MB)
J

2F
< 0 (44)

here 〈·〉 indicates a surface averaged quantity at the I/O bottom
lane (see Fig. 5). From the previous expressions, it is easy to
rove that, for a fixed current, the net out-coming mass flux
s 8 = (18 − 2)/2 times larger than the in-coming one. For this
eason, a total pressure gradient must exist as a driving force.

The actual species concentrations close to the (active) three-
hase boundaries must be such as to generate the mass fluxes
iven by Eqs. (41)–(43). Instead of using an iterative proce-
ure (more computational demanding), the following strategy
s suggested. Suppose that all the reactive cells behave in the
ame way (i.e. have homogeneous electrochemical reactions).
he local species densities for the generic reactive cells can be
xpressed as

R
A = ρ0

A − δρD (45)

R
B = ρ0

B + MB

MA
(δρD + δρM) (46)

here δρD and δρM are freely tunable parameters, while ρ0
A

nd ρ0
B are the fixed densities at the I/O bottom plane. The

atio MB/MA has been introduced in order to directly affect the
artial pressures (in fact the densities must be divided by the
orresponding molecular weights to obtain the partial pressure).

The numerical simulations confirm that the relation between

he mass fluxes and the tunable parameters used for specifying
he density in the reaction fluid cells is linear, namely:

ρAuA〉 − x0
A〈ρu〉 = kDδρD (47)
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ig. 6. Contours of the mass fluxes at the main I/O bottom plane (moving orth
node) mass fluxes for the water produced by the electrochemical reactions (the b
ide, in-coming mass fluxes for the consumed hydrogen. The normalization con

ρBuB〉 − x0
B〈ρu〉 = −kDδρD (48)

ρu〉 = −kMδρM (49)

here kD and kM are the fitting parameters which can be mea-
ured by means of the numerical simulations. Recalling Eqs.
41) and (42) and substituting them into the previous equations
ields:

〈ρAuA〉
〈ρBuB〉

]
=

[
kD −x0

AkM

−kD −x0
BkM

] [
δρD

δρM

]
= J

2F

[
MA

−MB

]
(50)

nd consequently

δρD

δρM

]
= J

2F

[
kD −x0

AkM

−kD (x0
A − 1)kM

]−1 [
MA

−MB

]
(51)

hich allows one to select the freely tunable parameters based on
he local densities for the reactive cells in order to produce mass
uxes coherent with a given current density. The simulations
an be performed in three steps:

First, some guessed values for the freely tunable parameters
δρD and δρM are assumed.
Then the fitting parameters kD and kM (for the specific porous
medium) are computed.
Finally, the actual current density (homogeneously dis-
tributed) can be simulated by means of Eq. (51).

In order to prove the effectiveness of the discussed tech-
ique in simulating reactive mixtures for SOFCs, the following
xample is reported. The smallest grain used in the defini-
ion of the porous medium reported in Fig. 4 is 0.404 �m. A
efinement factor of 8 was used in the numerical simulations,
ecause it ensures mesh independent results (see the follow-
ng section). This implies that the smallest computational cell
s 0.005053 �m3. The total size of the computational domain

s 2563 and was solved on 64 CPUs. Hence, each cube of the
plit domain reported in Fig. 5 is 643. The number of collisions
equired to produce steady state conditions was roughly 60,000
15 h of wall clock time on the cluster).

c
p
d
c

l to the picture): on the left hand side, out-coming (with regards to the porous
egions are where the flux is reversed due to drag effect), while on the right-hand
are ρ0 = 1 kg m−3 and c0 = 3685 m s−1.

The reactive boundary conditions were tuned for modeling a
urrent density equal to J = 0.4 A cm−2, which is a typical value
or this technology. In Fig. 6, the contours for the mass fluxes at
he main I/O bottom plane (moving orthogonal to the picture) are
eported: in particular on the left-hand side, out-coming (with
egards to the porous anode) mass fluxes for the water produced
y the electrochemical reactions are shown (the black regions
re where the flux is reversed due to back-step vortex effects),
hile, on the right hand side, in-coming mass fluxes for the

onsumed hydrogen are shown.
Even though the local mass fluxes are very small, the actual

ransport coefficients (i.e. mutual diffusivity and kinematic vis-
osity) can induce some small (laminar) vortices after the solid
bstructions which constitute the porous medium (back-step
ortices). In Fig. 6 this is evident for the out-coming water
ecause the plotted plane (I/O bottom plane) is located soon
fter the obstructions. However the same phenomenon holds for
he incoming hydrogen too, even though the vortices are located
n the porous medium bulk (when the pore size is large enough
o allow them).

Even though these considerations are very simple, they have
ed us to realize that the fluid paths of water and hydrogen can-
ot be exactly the same. The species fluid paths underlie the
omputation of the corresponding tortuosity. Hence, while the
orosity is a geometric (static) concept, the tortuosity depends
n the local fluid flows and, for this reason, it can be defined as
(fluid-dynamic) concept, which describes how a given species

nteracts with a given porous medium. It is then evident from
he previous example that the tortuosity for the water and for
he hydrogen should not be exactly the same, because these two
pecies follow different paths. This concept will be clarified in
he next section.

.2. Optimal refinement for fluid flow

The optimal refinement (i.e. how many computational

ells must be considered for modeling the fluid flow in a
hysical cell used to define the porous medium) directly
etermines the maximum size of the porous medium one
an consider in the mesoscopic simulations. For this rea-
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Table 2
Volume averaged mass fluxes computed by different computational meshes (for
the normalization values see Fig. 6)

Refinement Mesh
size

Species A
(�ρAuA�/ρ0c0)

Species B
(�ρBuB�/ρ0c0)

X2 643 25.57 3.35
X4 1283 25.26 4.48
X
X
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a
s
efaction effects) because of the conservation laws. However the
surface averaging does not preserve the exact continuity, since
it is applied to parallel surfaces (moving from the gas chan-
6 1923 24.56 4.77
8 2563 23.95 4.93

on, the relevance of this parameter is discussed in this
ection.

Four different meshes were considered by using an increas-
ng number of computational cells (643, 1283, 1923 and 2563).
he volume averaged mass fluxes for the whole porous medium

identified by the �·� notation) are reported in Table 2. The
volution of the numerical error is plotted in Fig. 7. It is clear
hat the scheme is only first order in space: this is due to the con-
idered boundary conditions at the solid wall (i.e. bounce-back
ule), which were adopted for simplicity, even though the max-
mum order of the scheme in the bulk is higher (second order
ccording to the asymptotic analysis [49]).

This means that in order to recover the desired accuracy
<3%) the maximum physical grid size is that considered in this
xample, i.e. 323, solved by means of the finest computational
esh, i.e. 2563 (refinement 8×). Unfortunately, as it is evident

y considering Fig. 1, a physical grid size of 323 does not allow
ne to consider a portion of the anode which is large enough
o be truly representative of the whole electrode. However, our
oal here is not to accurately solve the fluid flow but to properly
haracterize it from the macroscopic point of view.

.3. Optimal refinement for the computation of tortuosity
Once the fluid flow is known, the macroscopic tortuosity can
e computed. The basic idea is to interpolate the surface aver-
ged values obtained by means of the mesoscopic simulations
or both the mass fluxes and the density perturbations (difference

ig. 7. Numerical errors in the computation of the volume averaged mass fluxes
y using different computational meshes.

F
a

ig. 8. Surface average mass fluxes computed directly from the code and inter-
olated by a polynomial function (5th order).

etween actual density and the bulk density in the gas channel
ow), as reported in Figs. 8 and 9, respectively.

There is no physical principle which forces the surface aver-
ged quantities to be continuous. Obviously the mesoscopic (or
cale-level) quantities must be continuous (if we neglect rar-
ig. 9. Surface average density perturbations computed directly from the code
nd interpolated by a polynomial function (6th order).
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Table 3
Volume averaged tortuosity computed by different computational meshes

Refinement Tortuosity (�τ�) Variance root (
√

σ)

X2 2.1707 ±0.4446
X4 2.2096 ±0.4519
X
X
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ig. 10. Surface averaged tortuosity for both species moving from the gas chan-
el deeply in the porous medium (solid curve is the average tortuosity for the
arycentric momentum).

el deeply in the porous medium) which do not share the same
icroscopic topology. The interpolation is need for ensuring

mooth functions, which can be easily derived.
Applying the surface averaging operator to Eq. (15) yields:

λI
m〉 = −dpA/dz

〈ρAuA〉 − 〈ρAu〉 (52)

he tortuosity can be computed by taking into account that

= εD

De
= 1/〈λI

m〉
1/λI

m
(53)

he numerical results are reported in Fig. 10 for the same test
ase considered in Figs. 8 and 9. First of all, the computed tor-
uosities reasonably well match the practical values used for
haracterizing the SOFC anodes [6]. In particular a value close
o three is quite common for different materials. Even though a
ot of simplifications have been considered in the reconstruction
f the porous medium, the fact that the measured tortuosity has
reasonable value is encouraging.

Secondly according to the discussion reported at the end of
he previous section, there is no reason why both species should
ave the same tortuosity, since they realize different fluid flows.
n fact some differences are highlighted by Fig. 10. However
hese discrepancies are not so large, because proceeding deeply
n the porous medium pressure gradients (and consequently mass
uxes) became very small and the computed tortuosities are less
eliable.

Considering the importance of tortuosity in the characteri-
ation of the fluid flow through porous media because many
implified models use this parameter (e.g., [74–76]), some addi-
ional comments are needed in order to understand the physical

eaning of the numerical results and their relevance with regards
o fuel cell modeling. Despite the fact that it is usually considered
geometric parameter, the tortuosity was originally introduced
s a kinematic property, equal to the relative average length of
he flow path of a fluid particle from one side of the porous

edium to the other [76]. If and only if a suitable model of
he porous medium is chosen, for example, one consisting of

n
t
p
t

6 2.2432 ±0.4634
8 2.2733 ±0.4752

apillaries, then the tortuosity also becomes a purely geometric
roperty, because, in this case, the fluid path is uniquely defined
76]. Moreover in many simplified models concerning the fluid
ow through porous media (for example, the Kozeny theory), the

ortuosity is introduced as an undetermined factor, i.e. a fitting
roperty, which is usually justified only a posteriori by the desire
o have an additional arbitrary parameter in order to increase the
ccuracy of the theoretical predictions and to take into account
he mismatches between the microscopic topology assumed by
he model and the actual one of the medium considered [76].
hese three (sometimes conflicting) meanings of the tortuosity,

.e. as a kinematic, geometric or fitting property, are at the root of
ome common causes of confusion. In particular, if and only if
suitable microscopic topology of the porous medium or some
egree of homogeneity is assumed, then the tortuosity becomes a
urely geometric parameter, which is obviously independent of
he nature of the flowing species. However, if a scale of descrip-
ion small enough to catch the actual microscopic structure is
dopted (as is the case with the present work), then the fluid
aths are not uniquely defined and, in particular, they are not
ndependent of the transport properties of the flowing species.

Finally the sensitivity of the tortuosity to the mesh refine-
ent has been verified and the numerical results are reported

n Table 3. Fortunately the tortuosity has a small dependence
n the mesh resolution (<5%). The reason is that the tortuosity
omes from a ratio involving both pressure gradients and mass
uxes (as it is clear by considering Eqs. (52) and (53)), so it
nly slightly depends on the absolute errors for each singular
uantity. From the physical point of view, since the tortuosity
epends on the path of the considered species flowing in the
orous medium, Table 3 proves that even very coarse meshes
llow one to at least estimate the path of the species with accept-
ble accuracy. This means that larger physical domains can be
imulated by means of coarser meshes (actually 64 times larger
han that considered in this paper) for increasing the physical
eliability of the numerical results.

. Conclusions

It is clear that at the microscopic level, the actual fluid flow
s far from being homogeneous and it is much more compli-
ated than what is claimed by the averaged description used at
he macroscopic level. As long as the local optimization of the

aterials is not an issue, the macroscopic description does not

eed to get involved in so many details. However, the optimiza-
ion of the microscopic paths for both species would obviously
roduce an increase in macroscopic performance. For example,
he numerical simulations show that the reconstructed portion of
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he porous medium has a high reactive core surrounded by less
eactive portions. It is possible to imagine (at least in principle)
ocating the solid phases in such a way to induce the suction flow
f hydrogen in the central portion and the exhaust of water from
he neighboring regions: in this way, the two species would not
nterfere with each other. From the practical point of view, this
ptimization strategy could be based on the direct computation
f the actual tortuosity for both species in order to compare the
erformance of different micro-structured electrodes.

Even though the reported results are preliminary, they allow
ne to qualitatively investigate how the electrochemical reac-
ion affects the hydrodynamics inside the porous anode layer
t the microscopic level. In particular, this proves that the
sual practice of separately investigating the hydrodynamics and
lectrochemistry seems somewhat artificial and far from what
ctually happens microscopically. In order to apply the discussed
pproach to real-world problems, some improvements (which
re all currently under development) must be still considered:

First of all, the identification of the structure’s material con-
stituents, which is based on a number of proper threshold
values, introduces some arbitrariness in the initial experimen-
tal micrographs, which affect the consequent calculations.
This problem can be avoided by means of a direct spec-
troscopic method, i.e. the use of the energy dispersive
spectroscopy (EDS) feature, which allows one to directly
obtain the elemental composition of small objects or surfaces.
Secondly, the statistical procedure based on the granulom-
etry law used to catch the physical connectivity among the
constituents of the porous medium is not refined enough.
Consequently, the consequent reconstruction based on this
information is not completely reliable. The use of a two-point
statistics, which directly takes into account the connectivity
among the material constituents, would be highly welcomed
and is under development.
Finally, the ion and electron dynamics must be included in
the numerical model, meaning that two additional equations
for the corresponding potential flows must be solved. This
would allow one to include the Butler–Volmer relation for the
active TPBs, in order to model the electrochemical reactions,
which, in this way, would take into account the activation
overpotential and the local concentrations.
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